Galaxy, Molecular Clouds, and the Solar System

I would like to link the birth of the Solar System with the evolution of the Galaxy.  Where and how was the Solar System born?  I believe that short-lived radionuclides can be key nuclides for constraining the birth environment of the Solar System.  I also do laboratory experiments to simulate low-temperature photochemical reactions in the Sun's parent molecular cloud to constrain the chemistry of the cloud.

Related publications

Tachibana S., Kamizuka T., Hirota T., Sakai N., Oya Y., Takigawa A. and Yamamoto S. (2019) Spatial distribution of AlO in a high mass protostar candidate Orion Source I. Astrophys. J. Letters in press.

Sugahara H., Takano Y., Tachibana S., Sugawara I., Chikaraishi Y., Ogawa N. O., Ohkouchi N., Kouchi A. and Yurimoto H. (2019) Molecular and isotopic compositions of nitrogen-containing organic molecules formed during UV-irradiation of simulated interstellar ice. Geochem. J. 53, 5-20. doi:10.2343/geochemj.2.0553

Orthous-Daunay F.-R., Piani L., Flandinet L., Thissen R., Wolters C., Vuitton V., Poch O., Moynier F., Sugawara I., Naraoka H. and Tachibana S. (2019) Ultraviolet-photon fingerprints on chondritic large organic molecules. Geochem. J. 53, 21-32. doi:10.2343/geochemj.2.0544

Fujimoto Y., Kurmholz M. R. and Tachibana S. (2018) Short-lived radioisotopes in meteorites from Galactic-scale correlated star formation. Mon. Not. R. Astron. Soc. 480,4025-4039. doi:10.1093/mnras/sty2132

Telus M., Huss G. R., Nagashima K., Ogliore R. C. and Tachibana S. (2018) In situ 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 221, 342-357. doi:10.1016/j.gca.2017.06.013

Tachibana S., Kouchi A., Hama T., Oba Y., Piani L., Sugawara I., Endo Y., Hidaka H., Kimura Y., Murata K., Yurimoto H. and Watanabe N. (2017) Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures. Science Advances 3, eaao2538. doi:10.1126/sciadv.aao2538

Piani L., Tachibana S., Hama T., Tanaka H., Endo Y., Sugawara I., Dessimoulie L., Kimura Y., Miyake A., Matsuno J., Tsuchiyama A., Fujita K., Nakatsubo S., Fukushi H., Mori S., Chigai T., Yurimoto H. and Kouchi A. (2017)Evolution of morphological and physical properties of laboratory interstellar organic residues with ultraviolet irradiation. Astrophys. J. 837, doi:10.3847/1538-4357/aa5ca6

Telus M., Huss G. R., Ogliore R. C., Nagashima K. and Tachibana S. (2012) Recalculation of data for short-lived radionuclide systems using less-biased ratio estimation. Meteorit. Planet. Sci. 47, 2013-2030. doi:10.1111/maps.12041

Mishra R. K., Goswami J. N., Tachibana S., Huss G. R. and Rudraswami N. G. (2010)60Fe and 26Al in chondrules from unequilibrated chondrites: Implications for early solar system processes. Astrophys. J. Letters 714, L217-L221. doi:10.1088/2041-8205/714/2/L217

Takigawa A., Miki J., Tachibana S., Huss G. R., Tominaga N., Umeda H. and Nomoto K. (2008) Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing-fallback. Astrophys. J. 688, 1382-1387. doi:10.1086/592184

Tachibana S., Huss G. R., Kita N. T., Shimoda G. and Morishita Y. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophys. J. Letters 639, L87-L90. doi:10.1086/503201

Nakano H., Kouchi A., Tachibana S. and Tsuchiyama A. (2003) Evaporation of interstellar organic materials in the solar nebula. Astrophys. J. 592, 1252-1262. doi:10.1086/375856

Tachibana S. and Huss G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophys. J. Letters 588, L41-L44. doi:10.1086/375362